Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Am J Med Sci ; 367(2): 128-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984736

RESUMO

Cardiovascular diseases (CVD) are the main causes of death in hemodialysis patients, representing a public health challenge. We investigated the effect of different antihypertensive treatments on circulating levels of renin-angiotensin system (RAS) components in end-stage renal disease (ESRD) patients on hemodialysis. ESRD patients were grouped following the prescribed antihypertensive drugs: ß-blocker, ß-blocker+ACEi and ß-blocker+AT1R blocker. ESDR patients under no antihypertensive drug treatment were used as controls. Blood samples were collected before hemodialysis sessions. Enzymatic activities of the angiotensin-converting enzymes ACE and ACE2 were measured through fluorescence assays and plasma concentrations of the peptides Angiotensin II (Ang II) and Angiotensin-(1-7) [Ang-(1-7)] were quantified using mass spectrometry (LC-MS/MS). ACE activity was decreased only in the ß-blocker+ACEi group compared to the ß-blocker+AT1R, while ACE2 activity did not change according to the antihypertensive treatment. Both Ang II and Ang-(1-7) levels also did not change according to the antihypertensive treatment. We concluded that the treatment of ESRD patients on hemodialysis with different antihypertensive drugs do not alter the circulating levels of RAS components.


Assuntos
Anti-Hipertensivos , Falência Renal Crônica , Humanos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Enzima de Conversão de Angiotensina 2/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sistema Renina-Angiotensina , Peptidil Dipeptidase A/metabolismo , Peptídeos/farmacologia , Falência Renal Crônica/tratamento farmacológico , Angiotensina II/farmacologia , Fragmentos de Peptídeos/metabolismo , Diálise Renal
2.
Mol Cell Endocrinol ; 579: 112085, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827227

RESUMO

Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.


Assuntos
Epinefrina , Cininas , Camundongos , Animais , Homeostase , Catecolaminas , Glucose , Norepinefrina
3.
Front Med (Lausanne) ; 10: 1275394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093983

RESUMO

Introduction: Insulin Infusion Sets (IIS) play a crucial role in ensuring the safe delivery of insulin through a Continuous Subcutaneous Insulin Infusion (CSII) for individuals with Type 1 Diabetes (T1D). Recent advancements in therapy have highlighted the need to address issues such as unexplained hyperglycemia and IIS occlusion. Objective: To investigate the adverse events (AEs) associated with IIS that impact the treatment of T1D, with a specific focus on promoting effective educational practices. Methods: One hundred and eighteen patients under treatment at the Diabetes Center Insulin Pump Ambulatory, Federal University of São Paulo responded to a semi-structured questionnaire. Over 6 months, a nurse researcher interviewed them via video calls. Results: Catheter-related adverse events (AEs) included catheter knots, folding, and accidental traction. AEs associated with cannula use were mainly related to cannula fixation adhesive, insulin leakage, bleeding episodes, and skin problems. The cannula patch tends to detach easily in hot conditions or when used for more than 3 days, leading to local itching. Adhesive glue can cause redness and pain. Insulin leakage typically occurs after the catheter disconnects from the cannula, accidental cannula traction, or beneath the cannula patch. Bleeding has been reported inside the cannula or at the insertion site, resulting in local pain and, in some cases, obstruction of insulin flow. When accidental cannula traction occurs, it is recommended to replace the entire IIS system. In situations involving bleeding, leakage, insulin odor, or unsuccessful attempts to correct hyperglycemic episodes with a "bolus" of insulin, it is advisable to change the IIS system and evaluate appropriate techniques for handling and infusing the device. Moreover, regular inspections of the device and reservoir/cartridge are essential. Conclusion: Serious AEs can occur even in cases where the occlusion alarm is not activated, leading to interruptions in insulin flow. Conversely, in less severe situations, alarm activation can occur even in the absence of insulin flow interruption. Accidental catheter traction and catheter bending are commonly encountered in everyday situations, while issues related to the cannula directly affect blood glucose levels. AEs related to the IIS cannula often involve insulin leakage into the skin, bleeding, and skin events attributed to adhesive issues with the cannula.

4.
Neurogastroenterol Motil ; 35(9): e14598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37052403

RESUMO

BACKGROUND: Angiotensin-converting enzyme (ACE) and ACE2 are two major enzymes of the renin-angiotensin-aldosterone system (RAAS), which control the formation/degradation of angiotensin (Ang) II and Ang1-7, regulating their opposite effects. We aimed at evaluating the catalytic activity of ACE and ACE2 in the intestinal content and corresponding intestinal tissue along the gut of Wistar Han rats. METHODS: Portions of the ileum, cecum, proximal colon, and distal colon, and the corresponding intestinal content were collected from Wistar Han rats. Enzyme activity was evaluated by fluorometric assays using different substrates: Hippuryl-His-Leu for ACE-C-domain, Z-Phe-His-Leu for ACE-N-domain, and Mca-APK(Dnp) for ACE2. ACE and ACE2 concentration was assessed by ELISA. Ratios concerning concentrations and activities were calculated to evaluate the balance of the RAAS. Statistical analysis was performed using Friedman test followed by Dunn's multiple comparisons test or Wilcoxon matched-pairs test whenever needed. KEY RESULTS: ACE and ACE2 are catalytically active in the intestinal content along the rat gut. The ACE N-domain shows higher activity than the C-domain both in the intestinal content and in the intestinal tissue. ACE and ACE2 are globally more active in the intestinal content than in the corresponding intestinal tissue. There was a distal-to-proximal prevalence of ACE2 over ACE in the intestinal tissue. CONCLUSIONS & INFERENCES: This work is the first to report the presence of catalytically active ACE and ACE2 in the rat intestinal content, supporting future research on the regulatory role of the intestinal RAAS on gut function and a putative link to the microbiome.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hormônios Peptídicos , Animais , Ratos , Angiotensina II , Fezes , Conteúdo Gastrointestinal , Ratos Wistar , Sistema Renina-Angiotensina
5.
Hypertens Res ; 46(6): 1558-1569, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959504

RESUMO

This study aimed to evaluate the enzymatic activity of the angiotensin-converting enzyme (ACE) in children and adolescents to investigate their relationship with dyslipidemia and other cardiometabolic alterations. Anthropometric measurements, blood pressure (BP), and fasting lipid concentrations were taken from 360 subjects. Categorization was done according to the levels of each lipoprotein (total cholesterol, triglycerides (TG), LDL-C, HDL-C, and non-HDL-C) into three groups: normolipidemic (NL), borderline (BL), and dyslipidemic (DL). Enzymatic activity in urine was measured using the substrates Z-FHL-OH and hippuryl-HL-OH (h-HL-OH) and the ACE activity ratio (Z-FHL-OH/h-HL-OH) was calculated. Dyslipidemic levels of HDL-C, TG, and LDL-C were observed in 23%, 9%, and 3% of the participants, respectively, and were more frequent in obese children (Chi-square, p < 0.001). ACE activity ratio was augmented in BL(HDL-C) when compared to NL(HDL-C) (5.06 vs. 2.39, p < 0.01), in DL(LDL-C) in comparison to BL(LDL-C) and NL(LDL-C) (8.7 vs. 1.8 vs. 3.0, p < 0.01), and in DL(non-HDL-C) than in BL(non-HDL-C) and in NL(non-HDL-C) (6.3 vs. 2.1 vs. 2.9, p = 0.02). The groups with impaired HDL-C and TG levels presented an increased diastolic BP percentile, and a higher systolic BP percentile was observed in BL(TG) and DL(TG). The carotidal-femoral pulse wave velocity (cfPWV) was higher in the groups with DL levels of TG and LDL-C than in NL groups. Hypertriglyceridemia was associated with higher cfPWV. No direct impact of the ACE activity on BP values was observed in this cohort, however, there was an association between hyperlipidemia and ACE upregulation which can trigger mechanisms driving to early onset of hypertension and cardiovascular disease. Graphical abstract exemplifying the cohort, categorization of subjects into the groups NL normolipidemic, BL borderline, DL dyslipidemic, methods, and main findings. Pediatric dyslipidemia was consistent with dyslipidemia secondary to obesity (DSO), associated with higher urinary angiotensin-converting enzyme (ACE) activity ratio, BP blood pressure values, and carotidal-femoral pulse wave velocity (cfPWV).


Assuntos
Dislipidemias , Obesidade Pediátrica , Adolescente , Humanos , Criança , Pressão Sanguínea , LDL-Colesterol , Análise de Onda de Pulso , Triglicerídeos , Angiotensinas , HDL-Colesterol
6.
Life Sci ; 305: 120758, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35798071

RESUMO

AIMS: To investigate the effects of endurance training on stress-induced cardiometabolic perturbations given the elevated release of stress hormones and subsequent glucose homeostasis perturbations. MATERIALS AND METHODS: Rats were randomized into non-trained rats, rats submitted to endurance training, non-trained rats submitted to stress, and trained rats submitted to stress. Endurance training was applied for 8 weeks, while chronic stress was applied at the 4th, 5th, and 6th weeks of the training period. Two weeks after the last stressor stimuli, rats were euthanized, and blood and heart were collected for biochemical tests. KEY FINDINGS: Exacerbated corticosterone levels were observed in both stressed groups, and chronic stress per se impaired glucose tolerance and insulin sensitivity. Training reduced circulating adrenaline, even though noradrenaline levels were elevated in the blood and heart of trained rats. While stress-induced high circulating serotonin levels were further increased by endurance training, cardiac serotonin levels were attenuated in trained rats. Endurance training mitigated the stress-induced higher circulating lipids. Cardiac TBARs and GPx activity increased in trained rats while CAT and GPx were reduced in response to chronic stress. Endurance training not only attenuated the stress-induced higher circulating ACE/ACE2 ratio but also reduced ACE/ACE2 balance in the heart. Glucose intolerance, insulin resistance, and altered stress hormones release were linked to impairment of cardiometabolic responses, elevated oxidative stress, and dysregulation of ACE/ACE2 ratio. SIGNIFICANCE: Endurance training mitigated the stress-related pathophysiological responses, which could be related to improvements in the antioxidant capacity and the balance of ACE/ACE2 activity.


Assuntos
Doenças Cardiovasculares , Treino Aeróbico , Enzima de Conversão de Angiotensina 2 , Animais , Hormônios , Humanos , Estresse Oxidativo , Peptidil Dipeptidase A/metabolismo , Ratos , Serotonina
7.
Life Sci ; 301: 120616, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533758

RESUMO

AIMS: We aimed to investigate whether Saccharomyces boulardii strain might exert renoprotective effects by modulating renal renin angiotensin system, oxidative stress and intestinal microbiota in streptozotocin-diabetic mice. MAIN METHODS: Thirty-six C57BL/6 male mice were divided into four groups: control (C), control + probiotic (CP), diabetes (D), diabetes + probiotic (DP). Diabetes was induced by one intraperitoneal injection of streptozotocin and Saccharomyces boulardii was administered by oral gavage for 8 weeks. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7) and the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined, besides that, renal morphology, serotonin and dopamine levels and also microbiota composition were analyzed. KEY FINDINGS: Probiotics significantly increased C-peptide secretion and reduced blood glucose of diabetic animals. Saccharomyces boulardii also improved renal antioxidant defense, restored serotonin and dopamine concentration, and activated the renin-angiotensin system (RAS) vasodilator and antifibrotic axis. The modulation of these markers was associated with a beneficial impact on glomerular structure and renal function of diabetic treated animals. The phenotypic changes induced by Saccharomyces boulardii were also related to modulation of intestinal microbiota, evidenced by the decreased abundance of Proteus and Escherichia-Shigella, considered diabetic nephropathy biomarkers. SIGNIFICANCE: Therefore, probiotic administration to streptozotocin-induced diabetic mice improves kidney structure and function in a murine model and might represent a reasonable strategy to counteract nephropathy-associated maladaptive responses in diabetes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Microbiota , Saccharomyces boulardii , Angiotensina I/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Sistema Renina-Angiotensina/fisiologia , Saccharomyces boulardii/metabolismo , Serotonina/metabolismo , Estreptozocina/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-34925477

RESUMO

Coronavirus disease 2019 (COVID-19) is a rapid-spread infectious disease caused by the SARS-CoV-2 virus, which can culminate in the renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) systems imbalance, and in serious consequences for infected patients. This scoping review of published research exploring the RAAS and KKS was undertaken in order to trace the history of the discovery of both systems and their multiple interactions, discuss some aspects of the viral-cell interaction, including inflammation and the system imbalance triggered by SARS-CoV-2 infection, and their consequent disorders. Furthermore, we correlate the effects of continued use of the RAAS blockers in chronic diseases therapies with the virulence and physiopathology of COVID-19. We also approach the RAAS and KKS-related proposed potential therapies for treatment of COVID-19. In this way, we reinforce the importance of exploring both systems and the application of their components or their blockers in the treatment of coronavirus disease.

9.
J. bras. nefrol ; 43(4): 510-519, Dec. 2021. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1350917

RESUMO

Abstract Introduction: According to the International Diabetes Federation, the number of people with diabetes mellitus may reach 700 million in 2045. Catecholamines are involved in the regulation of several kidney functions. This study investigates the effects of hyperglycemia on catecholamines' metabolism in kidney tissue from control, diabetic, and insulin-treated diabetic rats, both in vivo and in vitro. Methods: Male Wistar-Hannover rats were randomized into: control, diabetic, and insulin-treated diabetic groups. Diabetes was induced by a single injection of streptozotocin, and diabetic treated group also received insulin. After 60 days, blood and kidney tissue from all groups were collected for catecholamines' quantification and mesangial cells culture. Results: diabetic rats had lower body weight, hyperglycemia, and increase water intake and diuresis. Additionally, diabetes promoted a sharp decrease in creatinine clearance compared to control group. Regarding the whole kidney extracts, both diabetic groups (treated and non-treated) had significant reduction in norepinephrine concentration. In mesangial cell culture, catecholamines' concentration were lower in the culture medium than in the intracellular compartment for all groups. Norepinephrine, epinephrine, and dopamine medium levels were increased in the diabetic group. Conclusion: The major finding of the present study was that 8 weeks of diabetes induction altered the kidney catecholaminergic system in a very specific manner, once the production of catecholamines in the excised kidney tissue from diabetic rats was differentially modulated as compared with the production and secretion by cultured mesangial cells.


Resumo Introdução: Segundo a Federação Internacional de Diabetes, o número de pessoas com diabetes mellitus pode chegar a 700 milhões em 2045. As catecolaminas estão envolvidas na regulação de várias funções renais. Este estudo investiga os efeitos da hiperglicemia no metabolismo das catecolaminas no tecido renal de ratos controle, diabéticos e diabéticos tratados com insulina, tanto in vivo como in vitro. Métodos: Os ratos Wistar-Hannover machos foram randomizados em: grupos controle, diabéticos e diabéticos tratados com insulina. O diabetes foi induzido por uma única injeção de estreptozotocina, e o grupo diabético tratado também recebeu insulina. Após 60 dias, sangue e tecido renal dos grupos foram coletados para quantificação de catecolaminas e cultura de células mesangiais. Resultados: ratos diabéticos apresentaram peso corporal mais baixo, hiperglicemia, e aumento da ingestão de água e diurese. Ademais, o diabetes promoveu uma redução acentuada na depuração de creatinina comparado com o grupo controle. Quanto aos extratos de rim total, ambos os grupos diabéticos (tratados/não tratados) tiveram redução significativa na concentração de noradrenalina. Na cultura de células mesangiais, a concentração de catecolaminas foi menor no meio de cultura do que no compartimento intracelular para todos os grupos. Níveis médios de noradrenalina, adrenalina e dopamina estavam aumentados no grupo diabético. Conclusão: O principal achado deste estudo foi que 8 semanas de indução de diabetes alteraram o sistema catecolaminérgico renal de maneira muito específica, já que a produção de catecolaminas no tecido renal excisado de ratos diabéticos foi modulada diferencialmente comparada com produção e secreção por células mesangiais cultivadas.


Assuntos
Animais , Masculino , Ratos , Diabetes Mellitus Experimental , Células Mesangiais , Catecolaminas , Ratos Wistar , Rim
10.
Life Sci ; 287: 120058, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673118

RESUMO

AIMS: We aimed to determine whether resistance training (RT) regulates renal renin-angiotensin system (RAS) components and inflammatory mediators in diabetic rats. MAIN METHODS: Male Wistar rats (3 months old) were randomly assigned into four groups: non-trained (NT), trained (T), non-trained + diabetes (NTD) and trained +diabetes (TD). Diabetes was induced by streptozotocin (50 mg/kg, Sigma Chemical Co., St. Louis, MO, USA), before RT protocol. Trained rats performed RT protocol on a 110-cm ladder (8 ladder climbs, once/day, 5 days/week, 8 weeks), carrying a load corresponding to 50-80% of maximum carrying capacity. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7), inflammatory markers, and also the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined. KEY FINDINGS: Blood glucose and urinary volume were elevated in diabetic animals, and RT decreased albuminuria, renal Ang I and Ang II levels in diabetic rats. RT shifted the balance of renal RAS toward ACE2/Ang 1-7 axis in TD group, and mitigated the high levels of interleukin (IL)-10, IL-1ß and cytokine-induced neutrophil chemoattractant 1 (CINC) in the context of diabetes. Strong positive correlations were found between albuminuria and Ang II, IL-10 and IL-1ß. On the other hand, intrarenal Ang 1-7 levels were negatively correlated with IL-10 and IL-1ß levels. SIGNIFICANCE: RT improved kidney function by modulating intrarenal RAS toward ACE2/Ang 1-7 axis and inflammatory cytokines. RT represents a reasonable strategy to improve the renal complications induced by diabetes, counteracting nephropathy-associated maladaptive responses.


Assuntos
Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefrite/metabolismo , Fragmentos de Peptídeos/metabolismo , Sistema Renina-Angiotensina/fisiologia , Treinamento de Força/métodos , Animais , Diabetes Mellitus Experimental/terapia , Rim/metabolismo , Masculino , Nefrite/terapia , Ratos , Ratos Wistar
11.
Front Physiol ; 12: 700220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497535

RESUMO

Coronavirus disease 2019 (COVID-19) was first reported in late December 2019 in Wuhan, China. The etiological agent of this disease is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the high transmissibility of the virus led to its rapid global spread and a major pandemic (ongoing at the time of writing this review). The clinical manifestations of COVID-19 can vary widely from non-evident or minor symptoms to severe acute respiratory syndrome and multi-organ damage, causing death. Acute kidney injury (AKI) has been recognized as a common complication of COVID-19 and in many cases, kidney replacement therapy (KRT) is required. The presence of kidney abnormalities on hospital admission and the development of AKI are related to a more severe presentation of COVID-19 with higher mortality rate. The high transmissibility and the broad spectrum of clinical manifestations of COVID-19 are in part due to the high affinity of SARS-CoV-2 for its receptor, angiotensin (Ang)-converting enzyme 2 (ACE2), which is widely expressed in human organs and is especially abundant in the kidneys. A debate on the role of ACE2 in the infectivity and pathogenesis of COVID-19 has emerged: Does the high expression of ACE2 promotes higher infectivity and more severe clinical manifestations or does the interaction of SARS-CoV-2 with ACE2 reduce the bioavailability of the enzyme, depleting its biological activity, which is closely related to two important physiological systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), thereby further contributing to pathogenesis. In this review, we discuss the dual role of ACE2 in the infectivity and pathogenesis of COVID-19, highlighting the effects of COVID-19-induced ACE2 depletion in the renal physiology and how it may lead to kidney injury. The ACE2 downstream regulation of KKS, that usually receives less attention, is discussed. Also, a detailed discussion on how the triad of symptoms (respiratory, inflammatory, and coagulation symptoms) of COVID-19 can indirectly promote renal injury is primary aborded.

12.
Steroids ; 175: 108916, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492258

RESUMO

We aimed to investigate the effects of high doses of nandrolone decanoate and resistance training (RT) on the proteomic profile of the left ventricle (LV) of rats, using a label-free quantitative approach. Male rats were randomized into four groups: untrained vehicle (UTV), trained vehicle (TV), untrained nandrolone (UTN), and trained nandrolone (TN). Rats were familiarized with the exercise training protocol (jump exercise) for one week. Jump-exercise was performed five days a week for 6 weeks, with 30 s of inter-set rest intervals. Nandrolone was administrated for 6 weeks (5 mg/kg, twice a week, via intramuscular). Systolic and diastolic arterial pressure and heart rate were measured 48 h post-training. LV was isolated and collagen content was measured. The expression of cardiac proteins was analyzed by ultra-efficiency liquid chromatography with mass spectrometry high / low collision energy (UPLC/MSE). Nandrolone and RT led to cardiac hypertrophy, even though high doses of nandrolone counteracted the RT-induced arterial pressures lowering. Nandrolone also affected the proteome profile negatively in LV of rats, including critical proteins related to biological processes (metabolism, oxidative stress, inflammation), structural function and membrane transporters. Our findings show physiological relevance since high doses of nandrolone induced detrimental effects on the proteome profile of heart tissue and hemodynamic parameters of rats. Furthermore, as nandrolone abuse has become increasingly common among recreational athletes and casual fitness enthusiasts, we consider that our findings have clinical relevance as well.


Assuntos
Nandrolona
13.
J. bras. nefrol ; 43(3): 303-310, July-Sept. 2021. tab, graf
Artigo em Inglês, Português | LILACS | ID: biblio-1340129

RESUMO

Abstract Introduction: Sickle cell nephropathy begins in childhood and presents early increases in glomerular filtration, which, over the long term, can lead to chronic renal failure. Several diseases have increased circulating and urinary angiotensin-converting enzyme (ACE) activity, but there is little information about changes in ACEs activity in children with sickle cell disease (SCD). Objective: We examined circulating and urinary ACE 1 activity in children with SCD. Methods: This cross-sectional study compared children who were carriers of SCD with children who comprised a control group (CG). Serum and urinary activities of ACE were evaluated, as were biochemical factors, urinary album/creatinine rates, and estimated glomerular filtration rate. Results: Urinary ACE activity was significantly higher in patients with SCD than in healthy children (median 0.01; range 0.00-0.07 vs median 0.00; range 0.00-0.01 mU/mL·creatinine, p < 0.001. No significant difference in serum ACE activities between the SCD and CG groups was observed (median 32.25; range 16.2-59.3 vs median 40.9; range 18.0-53.4) mU/m`L·creatinine, p < 0.05. Conclusion: Our data revealed a high urinary ACE 1 activity, different than plasmatic level, in SCD patients suggesting a dissociation between the intrarenal and systemic RAAS. The increase of urinary ACE 1 activity in SCD patients suggests higher levels of Ang II with a predominance of classical RAAS axis, that can induce kidney damage.


Resumo Introdução: A nefropatia falciforme começa na infância e apresenta aumentos precoces na filtração glomerular, que, em longo prazo, podem levar à insuficiência renal crônica. Várias doenças têm aumentado a atividade da enzima conversora da angiotensina (ECA) urinária e circulante, mas há pouca informação sobre alterações na atividade das ECAs em crianças com doença falciforme (DF). Objetivo: Examinamos a atividade da ECA-1 circulante e urinária em crianças com DF. Métodos: Este estudo transversal comparou crianças que eram portadoras de DF com crianças que compunham um Grupo Controle (GC). As atividades séricas e urinárias da ECA foram avaliadas, assim como os fatores bioquímicos, a relação albumina/creatinina urinária e a taxa de filtração glomerular estimada. Resultados: A atividade urinária da ECA foi significativamente maior em pacientes com DF do que em crianças saudáveis (mediana 0,01; intervalo 0,00-0,07 vs mediana 0,00; intervalo 0,00-0,01 mU/mL·creatinina, p < 0,001. Não foi observada diferença significativa nas atividades séricas da ECA entre os grupos DF e GC (mediana 32,25; intervalo 16,2-59,3 vs mediana 40,9; intervalo 18,0-53,4) mU/mL·creatinina, p < 0,05. Conclusão: Nossos dados revelaram uma alta atividade urinária da ECA-1, diferente do nível plasmático, em pacientes com DF, sugerindo uma dissociação entre o Sistema Renina Angiotensina Aldosterona (SRAA) intra-renal e sistêmico. O aumento da atividade urinária da ECA-1 em pacientes com DF sugere níveis mais elevados de Ang II com predominância do eixo clássico do SRAA, que pode induzir lesão renal.


Assuntos
Humanos , Criança , Insuficiência Renal Crônica , Anemia Falciforme , Angiotensinas , Estudos Transversais , Peptidil Dipeptidase A , Enzima de Conversão de Angiotensina 2
14.
Clin Sci (Lond) ; 135(15): 1805-1824, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34338772

RESUMO

In times of coronavirus disease 2019 (COVID-19), the impact of severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 infection on pregnancy is still unclear. The presence of angiotensin-converting enzyme (ACE) 2 (ACE2), the main receptor for SARS-CoV-2, in human placentas indicates that this organ can be vulnerable for viral infection during pregnancy. However, for this to happen, additional molecular processes are critical to allow viral entry in cells, its replication and disease manifestation, particularly in the placenta and/or feto-maternal circulation. Beyond the risk of vertical transmission, COVID-19 is also proposed to deplete ACE2 protein and its biological actions in the placenta. It is postulated that such effects may impair essential processes during placentation and maternal hemodynamic adaptations in COVID-19 pregnancy, features also observed in several disorders of pregnancy. This review gathers information indicating risks and protective features related to ACE2 changes in COVID-19 pregnancies. First, we describe the mechanisms of SARS-CoV-2 infection having ACE2 as a main entry door and current evidence of viral infection in the placenta. Further, we discuss the central role of ACE2 in physiological systems such as the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), both active during placentation and hemodynamic adaptations of pregnancy. Significant knowledge gaps are also identified and should be urgently filled to better understand the fate of ACE2 in COVID-19 pregnancies and the potential associated risks. Emerging knowledge will be able to improve the early stratification of high-risk pregnancies with COVID-19 exposure as well as to guide better management and follow-up of these mothers and their children.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Placenta/virologia , Complicações Infecciosas na Gravidez/metabolismo , Receptores de Coronavírus/metabolismo , SARS-CoV-2/patogenicidade , Biomarcadores/metabolismo , COVID-19/transmissão , COVID-19/virologia , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Placenta/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/virologia , Fatores de Risco , Internalização do Vírus
15.
Clin Sci (Lond) ; 135(15): 1825-1843, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34282828

RESUMO

In the present study, we tested the hypothesis that there are significant sex differences in angiotensin II (Ang II)-induced hypertension and kidney injury using male and female wildtype (WT) and proximal tubule-specific AT1a receptor knockout mice (PT-Agtr1a-/-). Twelve groups (n=8-12 per group) of adult male and female WT and PT-Agtr1a-/- mice were infused with a pressor dose of Ang II via osmotic minipump for 2 weeks (1.5 mg/kg/day, i.p.) and simultaneously treated with or without losartan (20 mg/kg/day, p.o.) to determine the respective roles of AT1a receptors in the proximal tubules versus systemic tissues. Basal systolic, diastolic, and mean arterial pressure were approximately 13 ± 3 mmHg lower (P<0.01), while basal 24-h urinary Na+, K+, and Cl- excretion were significantly higher in both male and female PT-Agtr1a-/- mice than WT controls (P<0.01) without significant sex differences between different strains. Both male and female WT and PT-Agtr1a-/- mice developed hypertension (P<0.01), and the magnitudes of the pressor responses to Ang II were similar between male and female WT and PT-Agtr1a-/- mice (n.s.). Likewise, Ang II-induced hypertension was significantly attenuated in both male and female PT-Agtr1a-/- mice (P<0.01). Furthermore, losartan attenuated the hypertensive responses to Ang II to similar extents in both male and female WT and PT-Agtr1a-/- mice. Finally, Ang II-induced kidney injury was attenuated in PT-Agtr1a-/- mice (P<0.01). In conclusion, the present study demonstrates that deletion of AT1a receptors in the proximal tubules of the kidney attenuates Ang II-induced hypertension and kidney injury without revealing significant sex differences.


Assuntos
Pressão Arterial , Hipertensão/metabolismo , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Angiotensina II , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fibrose , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Nefropatias/induzido quimicamente , Nefropatias/fisiopatologia , Nefropatias/prevenção & controle , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/fisiopatologia , Túbulos Renais Proximais/ultraestrutura , Losartan/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais
16.
J Bras Nefrol ; 43(4): 510-519, 2021.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34060586

RESUMO

INTRODUCTION: According to the International Diabetes Federation, the number of people with diabetes mellitus may reach 700 million in 2045. Catecholamines are involved in the regulation of several kidney functions. This study investigates the effects of hyperglycemia on catecholamines' metabolism in kidney tissue from control, diabetic, and insulin-treated diabetic rats, both in vivo and in vitro. METHODS: Male Wistar-Hannover rats were randomized into: control, diabetic, and insulin-treated diabetic groups. Diabetes was induced by a single injection of streptozotocin, and diabetic treated group also received insulin. After 60 days, blood and kidney tissue from all groups were collected for catecholamines' quantification and mesangial cells culture. RESULTS: diabetic rats had lower body weight, hyperglycemia, and increase water intake and diuresis. Additionally, diabetes promoted a sharp decrease in creatinine clearance compared to control group. Regarding the whole kidney extracts, both diabetic groups (treated and non-treated) had significant reduction in norepinephrine concentration. In mesangial cell culture, catecholamines' concentration were lower in the culture medium than in the intracellular compartment for all groups. Norepinephrine, epinephrine, and dopamine medium levels were increased in the diabetic group. CONCLUSION: The major finding of the present study was that 8 weeks of diabetes induction altered the kidney catecholaminergic system in a very specific manner, once the production of catecholamines in the excised kidney tissue from diabetic rats was differentially modulated as compared with the production and secretion by cultured mesangial cells.


Assuntos
Diabetes Mellitus Experimental , Células Mesangiais , Animais , Catecolaminas , Rim , Masculino , Ratos , Ratos Wistar
17.
J Bras Nefrol ; 43(3): 303-310, 2021.
Artigo em Inglês, Português | MEDLINE | ID: mdl-33973994

RESUMO

INTRODUCTION: Sickle cell nephropathy begins in childhood and presents early increases in glomerular filtration, which, over the long term, can lead to chronic renal failure. Several diseases have increased circulating and urinary angiotensin-converting enzyme (ACE) activity, but there is little information about changes in ACEs activity in children with sickle cell disease (SCD). OBJECTIVE: We examined circulating and urinary ACE 1 activity in children with SCD. METHODS: This cross-sectional study compared children who were carriers of SCD with children who comprised a control group (CG). Serum and urinary activities of ACE were evaluated, as were biochemical factors, urinary album/creatinine rates, and estimated glomerular filtration rate. RESULTS: Urinary ACE activity was significantly higher in patients with SCD than in healthy children (median 0.01; range 0.00-0.07 vs median 0.00; range 0.00-0.01 mU/mL·creatinine, p < 0.001. No significant difference in serum ACE activities between the SCD and CG groups was observed (median 32.25; range 16.2-59.3 vs median 40.9; range 18.0-53.4) mU/m`L·creatinine, p < 0.05. CONCLUSION: Our data revealed a high urinary ACE 1 activity, different than plasmatic level, in SCD patients suggesting a dissociation between the intrarenal and systemic RAAS. The increase of urinary ACE 1 activity in SCD patients suggests higher levels of Ang II with a predominance of classical RAAS axis, that can induce kidney damage.


Assuntos
Anemia Falciforme , Insuficiência Renal Crônica , Enzima de Conversão de Angiotensina 2 , Angiotensinas , Criança , Estudos Transversais , Humanos , Peptidil Dipeptidase A
18.
Front Physiol ; 12: 620438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897446

RESUMO

The present study investigated the angiotensin II (Ang II) responses in rat femoral veins taken from 2-kidney-1clip (2K1C) hypertensive rats at 4 weeks after clipping, as well as the effects of exercise on these responses. In this manner, femoral veins taken from 2K1C rats kept at rest or exposed to acute exercise or to exercise training were challenged with Ang II or endothelin-1 (ET-1) in organ bath. Simultaneously, the presence of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) were determined in these preparations by western blotting. In these experiments, femoral veins exhibited subdued Ang II responses. However, after nitric oxide (NO) synthesis blockade, the responses were higher in the femoral veins taken from animals kept at rest [0.137(0.049-0.245); n = 10] than those obtained in trained animals kept at rest [0.008(0.001-0.041); n = 10] or studied after a single bout of exercise [0.001(0.001-0.054); n = 11]. In preparations in which, in addition to NO synthesis, both the local production of prostanoids and the action of ET-1 on type A (ETA) or B (ETB) receptors were inhibited, the differences induced by exercise were no longer observed. In addition, neither ET-1 responses nor the presence of COX-1 and COX-2 in these preparations were modified by the employed exercise protocols. In conclusion, NO maintains Ang II responses reduced in femoral veins of 2K1C animals at rest. However, vasodilator prostanoids as well as other relaxing mechanisms, activated by ETB stimulation, are mobilized by exercise to cooperate with NO in order to maintain controlled Ang II responses in femoral veins.

19.
Hypertens Res ; 44(8): 969-977, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33568792

RESUMO

Children with obesity have a high risk of developing cardiovascular disease and hypertension, which is associated with the renin-angiotensin system (RAS) activation and kallikrein-kinin system (KKS) inactivation. Although recent studies have identified several peptide-based biomarkers for obesity, circulating peptides from the RAS and KKS in adolescents with obesity have not been described. The aim of this study was to examine circulating levels of RAS and KKS peptides in adolescents with obesity to investigate the turnover of these peptides and their relationship to metabolic disorders resulting from weight gain. The subjects (n = 104) were divided into normal weight (NW), overweight (OW), obese (OB), and morbidly obese (MO) groups. Anthropometric profiles were created by measuring height, weight, blood pressure, and skinfolds. Plasma levels of Ang I, II, (1-7), BK, and des-Arg9BK were quantified by high-performance liquid chromatography. The levels were as follows: Ang-(1-7)-MO 58.3 ± 50, OB 223.2 ± 150, OW 318.6 ± 190, NW 479.1 ± 160 pmol/mL, and Bradykinin (BK)-MO 367.6 ± 103, OB 253.8 ± 130, OW 484 ± 279, NW 874.9 ± 385 pmol/mL. Ang-(1-7) correlated inversely with weight, body mass index, leptin, diastolic blood pressure, and systolic blood pressure. BK and Ang-(1-7) levels correlated inversely with skinfolds, waist-hip ratio (WHR), leptin, and arm circumference. BK levels correlated with adiponectin and Ang-(1-7) levels. Plasma Ang I levels were higher in the MO and OB groups than in the NW group, but plasma Ang II levels were similar in all groups. We suggest that Ang-(1-7) and des-Arg9BK metabolites are novel biomarkers of childhood obesity that are important for determining treatment strategies.


Assuntos
Obesidade Mórbida , Obesidade Pediátrica , Adolescente , Biomarcadores , Bradicinina , Fatores de Risco Cardiometabólico , Criança , Humanos
20.
Behav Brain Res ; 397: 112928, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987059

RESUMO

Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.


Assuntos
Angiotensina II/metabolismo , Ansiedade/terapia , Disfunção Cognitiva/terapia , Depressão/terapia , Meio Ambiente , Hipotálamo/metabolismo , Sistema Renina-Angiotensina/fisiologia , Estresse Psicológico/terapia , Animais , Ansiedade/etiologia , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Depressão/etiologia , Depressão/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...